If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x=9=0
We move all terms to the left:
x^2-6x-(9)=0
a = 1; b = -6; c = -9;
Δ = b2-4ac
Δ = -62-4·1·(-9)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{2}}{2*1}=\frac{6-6\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{2}}{2*1}=\frac{6+6\sqrt{2}}{2} $
| X^2-7x-35=10 | | 9(y-83=81 | | 10-4c+5c=-10-c | | 1.653^x=6 | | 12-4y+5y=12 | | 11n-5=-5 | | 5(s+7)=55 | | Y=3x(2,6) | | 8j-10=9j-1 | | 10q-3=47 | | 5.1^x=(.8)^-x | | h-52=4 | | 32=14+2j | | 5 - 2x = 12 | | f/19+312=339 | | 9x+17x=52 | | y/17+(-426)=-405 | | 7x-1+57=180 | | 4x+8=-2x+40 | | m/6-(-24)=28 | | -8(t-89)=-80 | | 2x2+3x−1=4 | | (14x-44)=(7x+12) | | 2=0.50^x | | z/8+2=−35 | | y/6+49=55 | | 3x2+-5x-1=0 | | k/3+8=29 | | b+-7.4=-6.8 | | 8j-(-11)=91 | | A=a+40 | | 43+81+x=180 |